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The microscopic pathways of structural phase transitions are difficult to probe because they occur over 
multiple, disparate time and length scales. Using in situ nanoscale cathodoluminescence (CL) 
microscopy, we interrogate the thermally-driven transition to the perovskite phase (B-CsPbIBr2) in 
hundreds of non-perovskite phase (Y-CsPbIBr2) nanowires and resolve the initial nanoscale nucleation 
and the subsequent mesoscale growth. We quantify the activation energy for phase propagation and 
show with molecular dynamics computer simulations that the transformation proceeds via ion diffusion 
through a disordered interface between the two structures. With the aid of simulation and theory, we 
show that the original anisotropic crystal structure translates to faster nucleation of the B-CsPbIBr2 
phase at nanowire ends and faster growth along the long nanowire axis. These results represent a 
significant step towards manipulating structural phases at the nanoscale for designer materials 
properties. 
 
Time permitting, I will also describe how we elucidate the mechanism for a nanoscale photoinduced 
compositional phase transition in mixed halide perovskite structures. Photoinduced phase separation in 
mixed halide perovskites emerges from their electro-mechanical properties and high ionic 
conductivities, resulting in photoinduced I–-rich charge carrier traps that diminish photovoltaic 
performance. Whether photoinduced phase separation stems from the polycrystalline microstructure or 
is an intrinsic material property has been an open question. We investigate the nanoscale photoinduced 
behavior of single-crystal mixed Br–/I–methylammonium (MA+) lead halide perovskite (MAPb(BrxI1–x)3) 
nanoplates, eliminating effects from extended structural defects. Even in these nanoplates, we find that 
phase separation occurs, resulting in I–-rich clusters that are nucleated stochastically and stabilized by 
polarons. Upon lowering the electron–phonon coupling strength by partially exchanging MA+ for Cs+, a 
phase-separated steady state is not reached, nevertheless transient I– clustering still occurs. Our results, 
supported by multiscale modeling, demonstrate that photoinduced phase separation is an intrinsic 
property of mixed halide perovskites, the extent and dynamics of which depends on the electron–phonon 
coupling strength. 
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Figure 1.  Left: Secondary electron and cathodoluminescence movie frames to track structural 
conversion at 163 °C. Adjacent snapshots are separated in time by 6 seconds. Right: photoinduced phase 
separation of iodide and bromide revealed in nanoplates.  


