Laser-based phase contrast and coherent manipulation of electrons
O. Schwartz1,3, J. J. Axelrod1,3, S. L. Campbell1,3, C. Turnbaugh1,3, R. M. Glaeser2,3, and H. Müller1,3*

1Department of Physics, University of California, Berkeley, CA 94720, USA.
2Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.
3Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

Phase contrast can improve the image contrast of thin transparent specimens in transmission electron microscopy. A Zernike phase plate achieves that by retarding the unscattered wave relative to the scattered wave, but charging effects (patch potentials) have hindered efforts to develop such a device. We coherently control electron waves with a continuous-wave laser in a near-concentric Fabry-Pérot cavity. The intensity required to phase shift 300-keV electron beams is on the order of 100 GW/cm² [1] and has to be supplied by a continuous-wave laser if the phase plate is to be used with a conventional, unpulsed, electron microscope.

We are using a near-concentric optical cavity [2] with a Finesse of ~30,000 and an input power of ~10 W from a 10640-nm fiber laser and have so far realized up to ~50 GW/cm² intensity. Using it, we have demonstrated phase contrast in images of amorphous carbon film as well as biological specimens [3]. We will discuss latest results and prospects for use in routine transmission electron microscopy.

References:

Figure 1. Left: Schematic. A high-power standing laser wave in an optical cavity, is introduced into the electron beam. Right: Phase-contrast imaging with a laser-based phase plate. A close-to-focus image of a gold-laced amorphous carbon film. Laser-based phase contrast leads to a pronounced increase of image contrast, in particular in the areas without gold that show little contrast otherwise.