Laser-based phase contrast and coherent manipulation of electrons O. Schwartz^{1,3}, J. J. Axelrod^{1,3}, S. L. Campbell^{1,3}, C. Turnbaugh^{1,3}, R. M. Glaeser^{2,3}, and H. Müller^{1,3*}

¹Department of Physics, University of California, Berkeley, CA 94720, USA.
²Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.
³Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

Phase contrast can improve the image contrast of thin transparent specimens in transmission electron microscopy. A Zernike phase plate achieves that by retarding the unscattered wave relative to the scattered wave, but charging effects (patch potentials) have hindered efforts to develop such a device. We coherently control electron waves with a continuous-wave laser in a near-concentric Fabry-Pérot cavity. The intensity required to phase shift 300-keV electron beams is on the order of 100 GW/cm² [1] and has to be supplied by a continuous-wave laser if the phase plate is to be used with a conventional, unpulsed, electron microscope.

We are using a near-concentric optical cavity [2] with a Finesse of $\sim 30,000$ and an input power of ~ 10 W from a 10640-nm fiber laser and have so far realized up to ~ 50 GW/cm² intensity. Using it, we have demonstrated phase contrast in images of amorphous carbon film as well as biological specimens [3]. We will discuss latest results and prospects for use in routine transmission electron microscopy.

References:

 H Müller, J Jin, R Danev, J Spence, H Padmore, and R Glaeser, New J. Phys. **12**, 073011 (2010)
O Schwartz, J J Axelrod, D R Tuthill, P Haslinger, C Ophus, R M Glaeser, and H Müller. Opt. Express **25**, 14453-14462 (2017)

[2] O. Schwartz, J. J. Axelrod, S. L. Campbell, C. Turnbaugh, R. M. Glaeser, and H. Müller, arXiv:1812.04596

Figure 1. Left: Schematic. A high-power standing laser wave in an optical cavity, is introduced into the electron beam. **Right:** Phase-contrast imaging with a laser-based phase plate. A close-to-focus image of a gold-laced amorphous carbon film. Laser-based phase contrast leads to a pronounced increase of image contrast, in particular in the areas without gold that show little contrast otherwise.